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A novel method of describing elastic anisotropy based on the concept of 
an elastic eigen state is proposed. The structure of the rigidity tensor 
is determined. In particular, it is shown that the set of 21 constants 
describing continuously the manifold of elastic solids is composed of 
three different subsystems: 6 true rigidity moduli, 12 dimensionless 
rigidity distributors, and 3 invariant parameters defining the orienta- 
tion of the body in question relative to the labor'atory system of coord- 
inates. It is shown that Hooke's Law can be written uniquely for an 
arbitrary anisotropic body in the form of several laws describing the 
direct proportionality of the corresponding parts of the stress and 
deformation tensors. The construction of these parts is illustrated 
using an example of a transversally isotropic solid. 

1. We shall assume that the deformations are measured from the natural, stress-free 
state and are small, the influence of the temperature and other fields is insignificant, and 
the stress tensor (r is symmetric and is a linear reversible function of the deformation tensor 
e 

(r = C.s, s = 5.0 (1.1) 

The elastic behaviour is fully described by the material rigidity tensor C, or by the 
compliance tensor S . One is the inverse of the other, i.e. 

CoS=SoC=I, I-a=a (1.2) 

The law (1.1) was discovered in its basic form by Hooke /l/. The form of the tensor C 
was obtained for an isotropic solid during the first quarter of the last century /2/ 

(1.3) 

The form of C for all crystal classes was more or less obtained at the beginning of this 
country /3, 4/. The monographs /5-12/tan be used as a source of results of the determination 
of the elastic constants of specific materials and the quantitative features of the behaviour 
ofanisotropic elastic solids and of the calculations of the effective constants for complex 
bodies. 

At the same time we find, that many new materials, especially composites, have very 
anisotropic elastic properties, up to complete lack of symmetry. 

In the latter case, which also corresponds to that of triclinic crystals, group theory 
has "nothing to latch onto" and the existing approach yields no information whatsoever on the 
rigidity tensor. The theory leaves the experimenter no choice, but to measure 21 components 
Cifkl on a random basis. 

The cardinal problem of constructing efficiently a complete system of 18 invariants of 
the rigidity tensor, remains unsolved. In other words, we have no general algorithm for 
identifying tw.0 rigidity tensors in terms of the sets of their components measured in two 
different laboratories. The elegant proposition that the intrinsic bases should be chosen in 

terms of the convolutions Of Cijkk and cikjk /13/, is a substantial advance towards solving the 
problem, but is unsuitable in the case when the tensors have a symmetry axis, or are, altogether 
isotropic. 

Important though the symmetry might be, the laws need not be developed only in terms of 
it. We shall show that Hooke's Law conceals within it quite different possibilities for 
describing the structure of an arbitrary, linearly elastic solid. 

2. We shail call the tensor C the elastic solid C, with significance (which can easily 
be made more precise).' The essence of the proposed method of describing elastic properties 
lies in the foliowing. Let us take any elastic solid C and consider its exclusive states in 
which the stress and deformation tensors are not only coaxial, but also strictly proportional 

a =,he (2.1) 

Definition. The parameter h which has the dimensions of stress, will be called the true 
rigidity of the eiastic solid C, provided that a symmetric second rank tensor o exists, satis- 
fying the equation 

C.o=ho (2.2) 

-- 
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We shall call the tensor CO the elastic eigen state 
true rigidity modulus &. 

From (1.21 it follows that when h+ 0, the equation 

s.o= +e 

The elastic eigen state o can be regarded either as 
special stress state. 

of the solidc, corresponding to the 

(2.2) is equivalent to 

12.3) 

a special deformed state, or as a 

It is natural to expect from the mathematical, as well as the physical point of view, 
that the set of all true rigidity moduli and the corresponding elastic eigen states describes 
completely and in depth the behaviour of an elastic solid. We shall prove this, demanding 
only that several facts of the theory of linear operators be expressed in terms of tensor 
notation. 

3. Let us denote by 3 the initial. three-dimensional vector space, and by 0 = O(3) the 
group of its orthogonal transformations. The space of symmetric tensors of second rank over 
3 will be denoted by 2, and its tensor square by T 

Zssym3E3, TsZPZ (3.1) 

Thus we have by definition aii = aIt for any a~ Z and Lilk, = Ljirl = Lijtli for any I_. G T, 

Clearly, C E T. 
Let us introduce into I: the usual. (energy) scalar product 

(Ct,~)*a~f3ECtijfiij (3.2) 

The product is compatible with the Euclidean tensor structure in 2, i.e. it is invariant 
with respect to the group 0. The set 2 together with the operations of tensor summation, 
multiplication of a tensor by a number and of scalar multiplication (3.2), represents a 6- 
dimensional Euclidean space. 

Henceforth, we shall utilise the orthonormed bases in this space, i.e. the sextuplets of 
tensors 

(3.31 

Here and henceforth the capital Latin indices K, L, . . . run through the values 1,2,...,6, 
and the Elinstein summation rule does not apply to them. We shall write the expansion of any 
tensor a in terms of the basis elements (3.3) -in the form 

a=ato~+...+asob, ax=a.Ox (3.4) 

Any tensor LET can be identified with the linear operator 

a-bL.u 13.5) 

transforming the space 2 into itself. From (3.4) we have 

L.u=alL.of+...fc4rL.os=(L.01QPa)~f . . . +L+&@o~).a (3.61 

for any aE8. 
This leads (only because both fourth rank tensors in (3.6) belong to the tensor subspace 

T) to a fundamental tensor identity: for any tensor LET and any orthonormed basis OK 

L=L.or@or+...+L.w@os (3.7) 

The identity expresses explicitly the linear operator (3.5) in terms of its values on 
the basis (3.31, and is equivalent to the following identity: 

I=cp,@or-k...+os@o, 13.8) 

Indeed, (3.8) follows from (3,7), since 1-a =a for any a= Z. Conversely, (3.7) 

follows from (3.0) since LOI = IoL = L for any L E T. 
According to the definition of the tensor product of linear spaces, the set of 36 tensors 

eM@eJoL forms a basis in Ts Z @ Z. Therefore any tensor LET can be written uniquely 

in the form 

L=,$ +L@K@%, tK,=*K-L--L (3.9) 
* = 

Henceforth, the orothogonal projectors play a decisive role. Let us consider the sub- 

space nc X and its orthogonal complement nl The formula 

X=rI@rI~ (3.10) 



means ‘ as usual, that for any tensor aE 2 there are precisely two tensors en and anL such 

that 
a=an+a$, an.ai: =O. anElI (3.11) 

The tensor an is an orthogonal projection of CC on II. The tensor PE T, uniquely 
defined by the condition 

P.a=en, VaEZ (3.12) 

will be called the orothogonal projector on the subspace Il. If a part M E (oc.+r,. . .,ot.+y) 
of the basis WI,. . .( 0s is situated in II, then P.0, = OS for os~M and P.os=O for 
os g M , and according to (3.9) we obtain 

P = oL'+r 8 oL+1+ . . . + wJ+v @ w+v (3.13) 

From this we have V = dim II = P,jij. 

Two orthogonal projectors,P, on II, and P, on IIt, will be called orthogonal if the sub- 
spaces l&,lI, are mutually orthogonal. This is equivalent to the tensor equation 

P,.P* = PpP1 = 0 
The system of pairwise mutually orthogonal projectors PI, . . ., PO will be called an 

orthogonal expansion of unity, provided that 

I = P, + . . . _tP, (3.14) 

Any expansion of unity can be obtained by choosing the corresponding basis OK and group- 
ing the terms in (3.8) in the corresponding manner. The expansion of unity (3.14) is in one 
to one correspondence with the expansion of the space Z into the right sum of the subspaces 

II, G Im Pa, u = 1, . . . . p. 

4. We shall consider only hyperelastic bodies. In other words, we will assume that the 
body C has an elastic potential 

BcD(e)=a.e=e.C.e, a=&@ (4.1) 

This is equivalent to the condition of symmetry with respect to the scalar product (3.2) 

a.C+fi=fi.C.a, Va,fiEZ (4.2) 

Thus we deal with the linear symmetric operator a+C.a acting in a finite-dimensional 
space with a scalar product. (Strictly speaking, the stresses should be referred to a fixed 
standard; the reader can assume that this has been done). The situation has been investigated 
as fully as possible, and it only remains to translate the information available into the 
language of mechanics. 

The spectral theorem takes the form of the following fundamental structural theorem. 

Theorem 1. For any elastic solid C there exists exactly one orthogonal expansion of the 
space of symmetric tensors of second rank 

x = I-I, @ . . . $ &, n=I&fora#B,p<6 (4.3) 

and exactly one set of true moduli of rigidity 

h I,"', p, h L# he for a. # B (4.4) 

such that 

CehrPr+...+hpPp (4.5) 

where P, is an orthogonal projector on II,, a = 1, . . ., p. 
The proof can be obtained from /14-16/etc. by suitable changing the terminology. 
The mechanical meaning of the terms & is clear: the subspace n, consists of all elastic 

eigenstates corresponding to the modulus of rigidity &. Indeed, we have for any 0El-L 

C.o=(h-lP1i_...+h,P,).o=h,e (4.6) 

Thus we have a formula giving in explicit form the rigidity tensor in terms of its true 
moduli of rigidity and elastic eigenstates. 

Let us give other equivalent formulations of the fundamental structural theorem, which 
may perhaps prove more suitable. 

lo. For any elastic solid C at least one orthonormed basis B)x exists in x consisting 
of elastic eigenstates of this solid 

C.O~=~~O~, K=l,...,6 (4.7) 

2'. For any elastic solid C at least one orthonormed basis ox exists in X and six 
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parameters h,,...,h, such that * 

C=hroI~~ol-...$-hsos~' (4.81 

3O For any elastic solid C at least one orthonormed basis OK exists in S such that the 

matrix 

is diagonal. 

J. 10 

<f+f+ 1+1mz> 

i/l 
<1+1+1+3> <1+1+2+2’) 

;/2+/7 11 

<f+z+J> (f,f 14) <z+z+z> 

(1 v<2i’ > 
<3+3 > < ‘+5 > 

\ If / 
<6> 
Fig.1 

<41 + . . . +qp>, 

It will be helpful to observe the equiv- 

alence of the representations (4.5), (4.8). 

Formula (4.8) follows from (4.5) by virtue of 

(3.13). Conversely, taking into account in 

(4.8) all congruences hK and using (3.13), 
we arrive at (4.51, all terms of the sum being 
unique. For are sunply rdin;italthe formulas (4.5), (1.8) 

, with the one-dimensional 
projectors 

P1=o,@w~,...,Pg=og~‘ob (4.10) 

We shall call (4.5) or (4.8) the funda- 

mental structural formula for an elastic solid. 

Any orthonormed set of the eigens'tates ox of 

the tensor C will be called the material tensor 

reference point of the body in question. 

For the expansion (4.3) a corresponding 

decomposition exists of the number six into 

the integral positive terms 

qa G dimn, = Pcu)ij+j iA.11) 

(or, if preferred, Young's scheme /is/). We 

shall write this decomposition in the form 

q1 < . . . < QP (4.12) 

We shall call the set of all elastic bodies with the same first structurai index the 

elastic form. We shall say that the elastic form (k, + . ..+ k,> is subordinate to the elastic 

form Cm,+ . . . + m,) if t< U and k,are either equal to some mi, or are their sums. Fig.1 

shows the scheme of subordination of all 11 possible elastic forms. One form is subordinate 

to another, provided that one can pass from the latter to the former along the arrows shown. 

Each level of the scheme consists of all elastic solids with the same number of pairwise 

different true moduli of rigidity. The passage from the k-th level to the (k - I)-th level is 

made by making two moduli identical. The numbers accompanying the arrows indicate the number 

of possible identifications. 

We stress the fact that elastic solids of one elastic form can differ considerably from 

each other in the nature of the elastic eigenstates and in this symmetry properties, since 

the first structural index takes into account only the dimensionality of the spaces of eigen- 

states. 

5. The rigidity tensor given in the form 14.5) or (4.8) can be inverted quite rapidly. 

According to (1.2) the eigenelements of C and S are the same and the eigenvalues are invertible. 

Consequently the structural formula for the compliance tensor has the form 

s= *PI+...++ , Pp=+h,+...++-06~w6 (i.l/ 
D 6 

The quantities 1,-l represent the true compliance moduli. 

6. If the rigidity tensor C is given in terms of its components Ci,kr on some basis, 

then the rigidity moduli & and elastic eigenstates can be found as follows. We take in 

C any orthonormalized basis Tp, %P’zQ = 6pQ and introduce the matrix 

cpc 3 Tp. C.TQ = T(p)ijCijklt(Q)ki (6.1) 

By (2.2) the rigidity moduli will be roots of the sixth-degree equation 

det (c,, - AhPQ) = 0 (6.2) 

*I The concept given here was presented in the course of lectures given by the author since 

the end of the sixties in a number of Polish and Soviet research centres. A special case of 

(4.8) was used effectively in /17/. (See also: Rychlewski J. Mathematical structure of elastic 

solids. Preprint of Inst. of Problems of Mechanics. AS SSSR, IJo.217, Moscow, 1983). 



It can be shown that the coefficient of this equation are independent of the choice of 
the basis TIC, i.e. are invariants of the tensor C* 

The multiplicity of the root L is equal to the dimensions Qa of the space & 
The projectors of the structural formula (4.6) are also obtained using standard methods 

/14/ 

P, = + [(C - h*I)o . . . .(C-~,,_,I)~(C- &+,X)0. . . +--&I)] (6.3) 

A=(&- h,) . . . (ha - ha-,) (ha - k+,) . . . (L - J.&d 
I<U,<P 

(6.4) 

We note the formulas 

kp' CePa=CijklP@)i&l (6.5) 

Incidently, it is obvious that (6.2) and (6.3) will not be used all that often. In 

principle, the elastic solid can be described directly by the set of rigidity moduli and 
elastic eigenstates, i.e. by (4.5) or (4.8). 

7. Let us decompose the stress and deformation tensors over the spaces of elastic eigen- 
states of the solid in question 

a=-al+...+a,, ulz=Pct~aErI, 
(7.1) 

e=er+... +sp, E,=Pc&*eEn, 

arr.ufl=O, %-fsp=O, U,-y=O for a#;B (7.2) 

The basic structural theorem can be expressed in the following form: Hooke's Law can be 
decomposed in a unique manner into a system of PQ 6 independent, mutually orthogonal laws 
of direct proportionality 

u1 = LIeI, . . . , a, = hoe, (7.3) 

for any elastic solid C 
Indeed, substituting (7.1) and the structural formula (4.5) into (1.1) we obtain (7.3). 

Conversely, summing (7.3) we obtain (4.5). 
Equation (7.3) with index a is understood to be equivalent to pa scalar equations. For 

p = G all qa = 1 (the roots of (6.2) are simple) and Hooke's Law can be written in the form 
of six scalar equations 

a1 = &s1, . . ., 06 = b&3 (7.4) 
cr=e.@K, sK = s'@H 

Hooke's Law in the form (7.3), and even more so (7.4), seems to have reverted to the 
initial formulation given by the author himself in his remarkable anagram ceiiinosssttu\-(uttsnsio 
sic vis) /l/. 

Let us introduce the intensities 

so that 

(7.5) 

Iula=s12+... +so2, jeIZ=ele+....+epr 

From (7.3) there follows the proportionality of the intensities 

(7.6) 

sr=h,e,, . . . . sP=hpeP (7.7) 

The decomposition (7.3) generalises the representation of Hooke's Law given in textbooks 
for an isotropic body in the form of two tensor equations: the law of proportionality of the 
spherical and the deviator parts of the tensors u, e (See Sect.15 below). 

8. Let us now consider the elastic energy. Substituting (7.1) into (4.1), we obtain 
20 = slel + . . . t s,e, 

We see that if s, is treated as a generalised thermodynamic force, then e, will represent 
the corresponding generalised thermodynamic coordinate. Substituting (7.3) here we obtain 

2~=hle~*+...+)rpCpa=~sla+...+~spP 
P 

from which we obtain 

Theorem 2. The elastic energy of a solid C is positive for any state of deformation 

s#O if and only if its true rigidity moduli are positive A, > 0, 
Note the simplicity of these conditions. 

. . ..hp>o. 

*) The eigenvalues of the matrix CPQ were investigated, 
inthereview: 

for some set 71, by K.S. Aleksandrov 
Elastic properties of anisotropic media, Doctorate Dissertation, Inst. Crystal- 

lography, Academy of Sciences of the USSR, Moscow, 1967. 
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Using any material reference tensor ox, we obtain 

i 1 
2~=~h1e12+...+hgedz=~a~2+...+~u062 

I 
The above representation of the elastic energy lends itself to the following geometrical 

treatment: the isoenergetic surface Z@(u)= 1 is a 6-dimensional ellipsoid in Z and the 
axes of this ellipsoid are directed along the elastic eigenstates uK, while the lengths of 
the semiaxes are equal to the roots of true rigidity moduli I/rK. 

3. We shall consider the problem of determining the system of independent scalar para- 
meters describing continuously the manifold of elastic solids. 

According to the basic structural formula (4.8), any set 

(L, . . .t hs; 01, . . ., 06) (9.1) 

consisting of positive hx and an orthonormalized basis 01, defines some, theoreticallypossible 
elastic solid, for which Is will represent the true rigidity moduli and OK the material 
tensor basis. (Experiments show that the elastic constants satisfy additional natural pheno- 
menological restrictions which do not followfromthermodynamic concepts, such as constraints 
imposed on Poisson's ratio, etc.; we shall put this interesting problem to one side). 

Our problem reduces to thatofdetermining a set of free parameters describing continuously 
the manifold of orthonormalised bases in Z. 

As an example of the system of 36 parameters describing continuously, in general, six 
symmetric tensors ox relative to the laboratory coordinate system, we can take e.g. the fol- 
lowing set: 

traK, traK*, tr@K’, OK9 (PK? $K (9.2) 

Here OK, cpx, $Iprr denote the Eulerian angles Of the principal axes Of the tenSOr UK relat- 
ive to the laboratory coordinate system. 

Six normalizing conditions Ox'aK = troK2 = I eliminate tr OK* , and 15 conditions of ortho- 
gonality are imposed on the remaining 30 parameters, ~K.~L = 0 for K# L. Three angles 
e‘, 'pr,Q~ can be included in the system for some L. The remaining 12 independent parameters 
x1, . . ., xl1 will form a system of independent invariants of the set 01. .( 06. 

We have the following result: 
the manifold of elastic solids with elastic potential is described continuously, in the 

general case, by a system of 21 parameters consisting of the following subsystems, differing 
considerably for each other: 

6 invariants of the rigidity tensor 

hl, . . ., b (9.3) 

with dimensions of stress, and positive. The invariants determine the degree of general 
rigidity of the body, and are called true rigidity moduli. The corresponding true compliance 
moduli are 

h,_', . . ., hs-' (9.41 

12 dimensionless invariants of the rigidity tensor 

x1, . .,x12 (9.5) 

forming a functionally complete and irreducible system of invariants of the material tensor 
reference frame ax. They are identical forthe rigidity and the compliance tensor. We shall 
call these constants the rigidity distributors. 

3 invariant parameters, e.g. the Euler angles 8, cp,$ fixing the elastic solid in question 
relative to the laboratory coordinate system. 

A system of 18 invariants of the rigidity tensor 
(X1, . . ., hs, Xl, . . .1 x12) 

can be called the system of elastic material constants. (We note that it is generally incor- 
rect to call the components Ciikl elastic constants in a random basis. 

In choosing the system of independent invariants xl,..., xla we should remember that the 
invariants (9.2) are connected by relations such as e.g. the relation 

(tr co,)* + . . . + (tr 616)~ = 3 (9.6 

which follows at once from. (3.8). 
This is the situation in the "general case", i.e. in the neighbourhood of CET chosen 

in a suitable manner. For a particular family of elastic solids the number of pairwise differ- 
ent rigidity moduli is equal to p, and we have k rigidity distributors and f orientation 
parameters. We shall call the symbol 

Lp + k + fl, p < 6, k < 12, f < 3 (9.7) 

the second structural index of this family. 
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10. Let us use the set (9.1) to describe certain specific elastic properties. 
From (4.8) we obtain at once the following elegant formulas: 

TrC~CCijij=h,+...+hs=Qlhl+...-fqphp (10.1) 

c .c E CijlrlCijh.( = A,* + . . . i_ he* = QlW + . . . + q&P” (10.2) 

Thus the invariant TrC/6 has the sense of the mean rigidity modulus, and the invariant 

(C*C)'l*/1/8 of th e root mean square rigidity modulus. 
The modulus of uniform compression K is given by the expression 

(tr%)' (tr OS? 
-&--x;---"...+~ (10.3) 

Young's modulus in the direction n,E(n) is given by 

Poisson% ratio v(n,m) in the mdirection under tension and in the II direction under 
compression, is equal to 

v(n.m) (o~)(m*,m) (a~)(mo+) 
-E(n)= 5, 

+...+ A (10.5) 
0 

The shear modulus G(n,m), nm = 0 in the case of a simple shear in the plane containing 

n, m, is given by the expression 

1 (a@,@ 
?--=7+...+ 

(a~&' 
4G(a, m) 5 

(10.6) 

11. If a solid, e.g. a composite, is constructed in such a manner that one of the moduli 
1, is much greater than the others, we can idealize the rigid constraint 

k?-l = 0, l<vQp (11.1) 

In this case e, E P,.e = 0 and the right-hand side of the v-th equation of Hwke's Law 
(7.3) will represent an indeterminacy of the type 00.0. For this reason the part 0" of the 
stress tensor can be regarded as a reaction and is therefore not defined by Hooke's Law. The 
rigidity and compliance tensors should be taken in the form 

c=I1P1+... + LIP,-1 + L+1Pv+1 + . * * + &PO (11.2) 

(11.3) 

and they are mutually invertible in the generalized sense /16/. 

12. The basic structural formula (4.5) opens up fundamentally new 
classifying elastic solids. Formula (4.5) reduces this problem to that 
able classifications of orthogonal decompositions of the space X 

possibilities for 
of constructing reason- 

13. The proposed approach makes it possible to extend the existing energy condition of 
elastic Huber-Mises-Henckybehaviourto anisotropic solids. We will introduce the energy of 
the v-th elastic eigenstates 

2g+T (13.1) 

E, + . . . +E,=@ (13.2) 

We will write the energy condition of elastic behaviour in the form 

F VA, . . ., EP) < 0 (13.3) 

We note two special cases. The first case is 

a,& + . . . + a& Q k,' (13.4) 

where k, 85/ay can be regarded as the limiting strength for V-X elastic eigenstates. The 
second case is 

E, < t,, . . ., 4 < to (13.5) 

where tV characterizes the limit of elastic behaviour in the subspace n,. Generally speaking, 
when E, = t,, Hooke'sLaw (7.3) can stillholdinthe remainingsubspaces I&, . . . . II,_,, n,,,, . . ..& 

Note that under the existing generalizations of the Huber-Mises-Hencky condition (see 
e.g. /19--2l/),its quadratic form is retained, but the energy sense is lost. * 

*) The energy sense of any quadratic yield condition is explained in a paper published in 
"Uspekhi Mekhaniki", No.3, 1904. 
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14. Combining the proposed approach based on the elastic eigenstates with the approach 
based on symmetry, strengthens both. As usual, we regard as the symmetry group of the tensor 
LET. the subgroup O(L)cO *consisting of all orthogonal transformations X-,&S. QeO 
preserving this tensor 

O(L)=(QEOIQ*L=L} (i4.1) 

Here Q is an orthogonal, second-rank tensor and the linear operation Q* is defined on 
the decomposable tensors by the formula 

Q+(ar 8 . . . 0 a4) E Qal 0 . . . 8 Qa, 
Using the structural formula (4.5), we obtain the following fundamental theorem on 

elastic symmetry. 

Theorem 3. The symmetry group of an elastic solid O(C) is equal to the intersection of 
the symmetry groups of its projectors 

0 $1 = 0 (Pl) f-l ... f-! 0 (PP) (14.2) 

Proof. If QePa = P, for all a = 1, . . . . p, then we also have 

Q.C=Q+(h,F,+...)=h,QeP,+...=C (14.3) 

Conversely, let Q*C = C. Then 

h,QeP, + = h,P, + . . . (14.4) 

Since P,, . . . . Pp is an orthogonal expansion of unity, it follows that so is Q.p,, . . . . 

Q+Pp rbecause Q*I = I for all QEO. In accordance with the uniqueness of the structural 
formula (4.6) we obtain Q;P, = Por,a = I,...,& 

Theorem 3 makes is possible to find all elastic eigenstatesofanelastic solidsymmetrical 
with respect to the given subgroup G c 0. Indeed, the process is equivalent to finding all 
expansions of unity (3.14) in which the terms are symmetrical in G. This in turn implies that 
we must obtain all decompositions of the space of symmetric second-rank tensors E (4.3) in 
which all terms are invariant with respect to the group G. The solution of this problem leads 
to a very simple theory of elastic symmetry for solids of any structure. 

15. Let us consider two elementary examples. 

An isotropic elastic solid. The elastic eigenstates of an isotropic solid have been well 
known for a long time. They can be represented by ant spherical tensor and any deviator. 

The decomposition (4.3) has the following standard form: 

I=l-IfBA (15.1) 

where U is a l-dimensional space of spherical tensors and A is a S-dimensional space of 
deviators. The decomposition (15.1) can be obtained at once from the theorem on synrnetry, 
since II and A are unique subspaces invariant with respect to the whole orthogonal group 0. 
This phrase represents, if you please, the derivation of Hooke's Law for an isotropic solid, 

of record-breaking brevity (see e.g. /22/j. The projectors on II and A are 

I,=y3i@lr IA=I--/31@1 

The basic structural formula (4.6) takes the form 

C=5,1,+l,B, 

This is identical with (1.3), and 

s,= 3K = 3J.f 2p, A, = 2P 

Thus for an isotropic body the simple modulus hn (triple modulus of volume rigidity) 

and quintuple modulus 1, (doubled shear modulus) represent the true rigidity moduli (9.3). 
There are no rigidity distributors (9.5) nor aligning angles, since the body does not contain 
even a single separated fibre. The structural indices of the family of isotropic elastic 
solids are 

(1 + 5>, [2 + 0 + 01 

The orthogonal decomposition (7.3) of Hooke's Law takes the form 
a* = )CnEn. 6h = h,C& 

where 
an ='/s&U) 1, en = '/3(tr e) 1 
VA =(r--(7n, ei =a--8s 

represent the sperhical parts and deviators. 
Formula (13.2) represents the separation of elastic energy into volume-change energy 

En and form-change energy E, 



Putting 
behaviour. 

0 = E, i E, 

2&,=io.In.a= 
h 

2E, = +IA.o = 
h 

&L[o.a-+ (troq 

in (13.5) tn= =, we obtain the Huber-Mises-Iiencky condition E,Br, of elastic 

It is interesting to note that a definition of an isotropic solid itself can be given 
without mentioning its symmetry. In fact, the following theorem holds: an elastic solid C is 
isotropic if and only if any simple shear 

o=I(m@n+n@m),mn=O (15.2) 

represents its elastic eigenstate. The non-triviality of this proposition lies in the fact 
that the condition of equality of the rigidity moduli is not previously assumed for the shears 
(15.2). The proof is given in /23/. 

Isotropic elastic solids with zero Poisson's ratio 

An-& -0 
=w- 

form a special family. We shall call them perfect elastic solids. 
A, and Hooke's Law has the form 

We have for them A,= 1, = 

C= II, i.e. 0 = Re 
For an ideal material any state is the elastic eigenstate. The structural indices are limit- 
ing 

(6), I~+O+Ol (15.3) 

Let us now consider a more interesting case. 

A transversally isotropic elastic solid. Suppose an elastic solid is symmetric with 
respect to the group of rotations R, about the unit vector k, i.e. O(C)>R,. According to 
(14.2) we must seek all decompositions (4.3) in which the terms will be stable with respect 
to the group RL_ Let us choose the Cartesian basis in such a manner, that the third axis is 
directed along k . The solution is 

z =n,e n,e n,e n, (15.4) 

Here n, is a l-dimensional space of axisynnnetric tensors of the form 

n, is a l-dimensional space of axisymmetric tensors of the 

0 
0 

-V~cosx 

n, is a Z-dimensional space of simple shears of the form 

cr,- 

(15.5) 

form 

(15.6) 

(15.7) 

and Il. is a Z-dimensional space of simple shears of the form 

.z Y 0 
a4 - 

u ii 
y-z 0 
0 0 0 

(15.8) 

The formula 

expresses an arbitrary tensor a is terms of six parameters P, Q, 4 c, 2, Y. 
Fig.2 shows the elastic eigenstates of a transversally isotropic solid %,u+ %,a, . The 

reader is invited to confirm that a,,.a,,=O when ViP and, after arbitrary rotation about 
the unit vector k, any tensor av= n, remains in n,. 

The decomposition (15.4) is intuitively clear. Let us imagine a transversally isotropic 
solid in the form of an isotropic matrix reinforced with fibres in the k direction. First 
acquaintance with the resistance of materials to small deformations is sufficient to enable 
us to assert that simple shears (15.7) and (15.8) will represent the elastic eigenstates of 
the solid in question. Indeed, under the shears (15.7), (15.0) the work performed by the 
isotropic matrix is the only work done. This explains the presence of two-dimensional terms 

n3, fl, in (15.4). As regards the pair n,,n, with variable X, it represents an arbitrary 
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orthogonal decomposition of the two-dimensional space (II, @ II,)-. 

k t 

The projectors -P,(x, k), I',(%, k), P,(k). P,(k) can be 

s, corz/f? 

8 

written down using (3.13). 
Hooke's Law has the form 

aa ainnx 
The system of elastic parameters defining a 

concrete, transversally elastic body, consists of 
1) 4 true rigidity moduli b,,&l,, 1, where J.,, h, 

u 
can be regarded as shear moduli; 

2) rigidity distributor x,0<%< n/2; 
3) two angles 9,~ defining the position of the 

axis of symmetry relative to the laboratory coordin- 
*+ 

@ 

ate system.. 
The structural indices are 

Fig.2 

a- 

<i+1+2+2,. I4+i+2) (15.91 

The elastic constants b,,L,,b,,b,,x can be ex- 
pressed in terms of five non-zero components Cijkl 

different from each other, on the Cartesian basis 

a 
used. 

The following theorem holds: an elastic solid is 
transversally isotropic if and only if there is a 
unit vector k such that the simple shears 

a@k+k@a. ak=O 
a@b+b@a. ab=ak=bk=O 

are its elastic eigenstates. The last two theorems indicate the remarkable role played by 
simple shears in problems of elastic behaviour for small deformations. 

Let us consider a completely different case. 

A completely asymmetric elastic solid. Let us take an orthonormalized triad of axisym- 
metric deviators 

q =+-3t*@t,) 

where t,, ta. 1% is a triad of equally inclined unit vectors 

It can be confirmed that indeed h.la = a @. Let us introduce a two-dimensional orthogonal 
projector 

and consider the 

whose structural indices are 

If the true 
we find that 

rigidity moduli )L,~l,~,,~,,~, are pairwise different, then from Theorem (14.2) 

0 (C) = O(Tl@ 211 n O(Tt @ %) n O(Q @ TJ) = ii* --1) 

(15.10) 

family of elastic solids 

c= ~l~1+~,r,~TI+~*rt8tl+~,T*~7~+I(rP 

(1 + i + 1 f 1 + 2>, (5 + 0 + 31 

i.e. the solid is asymmetric in the limit (a triclinic system). At the same time the solids 

(15.10) possess a well-defined mathematical structure. Firstly, they are spatially isotropic, 
i.e. for a spherical deformation a=et a corresponding hydrostatic stress state o=C.e=(Le)l 
exists. Secondly, the material tensor reference frame contains here a unique configuration 
of three axisymmetric deviators. 

This somewhat artificial example was given to illustrate the wealth of possibilities of 
elastic behaviour contained within the structural formulas obtained. 

16. Everything discussed here concerns the behaviour of linearly elastic solids. A 
simple, though very wide and apparently important practical class of non-linearly elastic 
solids will be described by defining equations of the type 

o=C(e).e 
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where the "rigidity tensox" C (8) is a function of deformations of the form 

C (8) = L (4 PI (e) + . . . + & (4 Pp (4 

the system PI(e),..., PP(e) represents, for any e, an orthogonal decomposition of unity 

(16.11 

and 1, (e) are invariants of some SUbgrOUp G c 0. 
In particular, we may consider a situation in which the decomposition (16.1) is constant 

and the "rigidity moduli" are the only parameters depending on the deformations 

C(e)=hl(e)P1+... +&(e)P, 

An example of such a dependence is 

C(s)=h& + hA(e 

If AA(E) is invariant, then the body is isotropic. This case serves as the basis for the 
theory of small elastoplastic deformations /24/. 

17. We have described how an elastic solid is constructed mathematically. The results 
obtained do not "alter" the usual form (1.1) of the law of elasticity; on the contrary, in a 
number of situations it is unsurpassed in its simplicity. 

The development of the approaches connecting an open mathematical structure of any linearly 
elastic solid with the physical structure of a specific solid (crystal, polycrystal, a compos- 
ite, alloy, plastic, glass, etc.) as well as the development of experimental procedures aimed 
at determining the true rigidity moduli and the elastic eigenstates, all represent intersect- 
ing and complex problems requiring a separate investigation. 

A preliminary account of the results obtained was given in /25/. In /26/ the approach 
was applied to thermoelasticity, and in a paper referred to there, to the theory in the 
strength of materials. 

In conclusion we stress, that the results given here are as accurate, and, within that 
accuracy, as general, as law (1.2) itself. We have merely polished a few new faces of a 
crystal discovered by Robert Hooke, 
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Appendix. Below we give a list of relations enabling any formula of this paper to be 
rapidly transformed into Cartesian index language 

‘fjkl =.‘I¶ ('ik'jl +'i$kj) 

We rewrite, as examples, three principal formulas, namely 

‘ij = ‘fjklEkI 

'ijk[= hlP(,) ijkl $ *" +'p'@) ijkl 

',I,, = Xl O(J) ij O(I) ki + * ’ * + ‘Uw(U) ijo kl 

(1.1) 
(4.6) 
(4.9) 

Note added in proof. The author discovered in the library a copy of the Philosophical 
Transactions of the Royal Society of London, of 1856, containing a paper by the future Lord 
Kelvin: Thomson W. Elements of a Mathematical Theory of Elasticity, p.481-498. Kelvin 
introduces in this paper the elastic eigenvalues, calling them the Six Principal Strain-Types 
of the body. He could not possibly obtain the structural formulas, since the mathematical 
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techniques necessary did not exist at the time. Moreover, the author discovered that the 
paper was reviewed with scepticism in /2/ at the end of last century, and then promptly for- 
gotten. It therefore seems appropriate to call the true rigidity moduli the Kelvin moduli. 
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